Quote Originally Posted by Jay Lawrence View Post
Where did you get "effective" damper travel from? There is wheel motion, and this is translated to the damper. There isn't really anything "effective" here. Don't confuse yourself with motion ratio. It doesn't necessarily make whatever suspension mode stiffer; it can make it stiffer or softer or leave it the same, or it can be rising/failing rate.
Searched for details of damper to get more in depth. Came across this article by "Kaz Technology".
http://www.kaztechnologies.com/fileadmin/user_upload/Kaz_Tech_Tips/FSAE_Damper_Guide-_Jim_Kasprzak_Kaz_Tech_Tip.pdf

While reading I was finding what effect damper travel will have on its characteristics. When damper travels more, the fluid is pushed more and since the cross section area of valve is same, better damping is achieved. (This was taught to us in no further detail). But after going through the article, first of all its not just travel but its travel per sec which affects damping. In it they have explained how fast, medium and slow speed dampers differentiate in rebound and compression. Then I came across this:
There are several reasons for using high motion ratios. The first is higher motion ratios require lower spring rates for the same wheel rates. Lower spring rates are also lighter, and result in less spring and shock friction as well as lower component loads. The other reason is greater damper travel and higher shock velocities. Since dampers perform better at higher velocities, and the wheel displacements are quite small on a FSAE car, higher motion ratios produce better shock performance.
By higher motion ratio they meant as close to 1.0 i.e the spring displacement or damper displacement is same as wheel displacement.

So I concluded, if we can bring motion ratio very close to 1 by direct mounting the damper, the benefits of easy frame design, load paths etc can be achieved without losing on shock performance.